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Randomized experiments are an excellent tool for estimating internally valid causal effects
with the sample at hand, but their external validity is frequently questioned. While clas-
sical results on the estimation of Population Average Treatment Effects (PATE) implicitly
assume random selection into experiments, this is typically far from true in many medi-
cal, social-scientific, and industry experiments. When the experimental sample is differ-
ent from the target sample along observable or unobservable dimensions (termed covari-
ate shift in the causal learning literature), experimental estimates may be of limited use
for policy decisions. We cast this as a sample selection problem and propose methods
to re-weight the doubly-robust scores from experimental subjects to estimate treatment
effects in the overall sample (=: generalization) or in an alternate target sample (=: trans-
portation). We implement these estimators in the open-source package causalTransportR1

and illustrate its performance in a simulation study and discuss diagnostics to evaluate its
performance.

METHODS
We observe n iid copies of (Xi, Si, SiAi, SiYi)

n
i=1, where covariates Xi ∈ Rp, treatment Ai ∈

A := {0, . . . ,K}, outcome Yi ∈ R, and selection indicator Si ∈ {0, 1} is a function of
pre-treatment variables and is not affected by treatment. In other words, we observe
(Xi,Ai,Yi)

N1
i=1 for observations with Si = 1 (henceforth the study sample S1), and only

(Xi)
N
i=N1+1 for observations with Si = 0 (henceforth the external sample S0). The overall

sample is S := S1 ∪ S0.
Estimands.Wewrite counterfactualmeans asϕ = E

[
Ya,S=1] for generalizability andE [Ya|S = 0]

for transportability, and contrasts between such counterfactualmeans under any two treat-
ment levels a, a′ represent the average treatment effects (ATE). ‘Standard’ estimation of ef-
fects in the study sample under unconfoundedness is a well-studied and largely resolved
problem (see [10] for a review). We study the generalization and transportation problems
in the present paper. To this end, we make the following assumptions:

(1) Consistency / SUTVA : Yi = 1Ai=aYa
i

(2) Ignorability of Treatment: Y0, . . . ,Ya ⊥⊥ A|X = x, S = 1
(3) Overlap

(a) Treatment overlap: 0 < Pr (A = a|X = x, S = 1) < 1
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(b) Selection overlap: 0 < Pr (S = 1|X = x) < 1
(4) Selection

(a) Y0, . . . ,Ya ⊥⊥ S|X = x Ignorability of Selection.
(b) E [Y|A,X, S = 1] = E [Y|A,X, S = 0]. The outcome model is stable across S

strata.

Under assumptions 1,2,3 and 4a, causal quantities of interest in the overall sample are
identified [2, 6], while under 1,2,3, and 4b, causal quantities of interest are identified in
the target sample [5]. While prior work focused on binary treatments, we establish identi-
fication and estimation for counterfactual means and causal contrasts for multiple discrete
treatments, which is the norm at Netflix and other industry settings.

Estimators. Our preferred estimators are efficient influence function (EIF) based that take
the form of sample averages ψ̂ = 1

n
∑n

i=1 φ(Wi) where Wi = (Ai,Xi,Yi, Si). The influence
function obeys n1/2(ψ̂ − ψ) = n−1/2 ∑n

i=1 φ(Wi) + op(1). This form characterizes Regular
and Asymptotically Linear (RAL) estimators and allows us to construct valid confidence
intervals using the sample variance of the influence function. These estimators rely on the
estimation of three nuisance functions: (1) Outcomemodel µa(x) = E [Y|A = a,X = x], (2)
Treatment Propensity score πa(x) = Pr (A = a|X = x, S = 1), and (3) Selection propensity
score ρ(x) = Pr (S = 1|X = x). Their sample analogues α̂ are fit using machine learning
estimators with cross-fitting and is implemented in the package with regularized regres-
sions and generalized random forests.

The estimators under consideration take on one of three forms outlined in table 1. Out-
come Modeling (OM) is a pure transfer-learning approach that involves fitting condi-
tional response surfaces E [Y|A = a, S = 1] over the observations with nonmissing Y and
extrapolating these over the relevant samples. Inverse Selection Weighting (ISW) in-
volves modeling the selection probability into the source sample with covariates, and
reweighting observations to mimic the target samples. Augmented ISW (AISW) com-
bines the ISW and OM approaches by augmenting the outcome model with an weighted
average of residuals (Y − µ(·)) and possesses double-robustness properties (from out-
come of both propensity models) analogous to the classical Augmented IPW estimator
[14]. Both ISW and AISW can be stabilized using a Hajek normalization term equal to the
sum of weights in each treatment level a.

If only summary statistics are available for the target sample, AISW is infeasible since
it requires individual level covariates for all observations to construct weights. In such
cases, a ‘calibration’ approach based on solving for balancing weights that ensure balance
between two population is feasible and has appealing properties in finite samples , and is
also implemented using entropy loss [9] in the package.
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TABLE 1. Estimators. Difference between marginal means ψ̂a − ψ̂a′ yields causal
contrasts τ(a, a′). Standard errors are computed as

√
σ̂2/nwhere σ̂2 is the sample

variance of the influence function of interest (marginal mean or causal contrast)
for AISW, or via the nonparametric or bayesian bootstrap for other estimators

Generalization∑
x E [Y|A = a, S = 1,X]P(X)

Transportation∑
x E [Y|A = a, S = 1,X]P(X|S = 0)

OM 1
n
∑

i µ̂
a(Xi)

1
|S0|

∑
i(1− Si)µ̂

a(Xi)

ISW 1
n
∑

i
Si

ρ̂(Xi)
1A=a
π̂a(Xi)

Yi
1
n
∑

i
1

Ê[Si=0]
Si(1−ρ̂(Xi))

ρ̂(Xi)
1A=a
π̂a(Xi)

Yi

AISW 1
n
∑

i µ̂
a(Xi) +

Si
ρ̂(Xi)

1A=a
π̂a(Xi)

(Yi − µ̂a(Xi))
1
n
∑

i
1

Ê[Si=0]

(
(1− Si)µ̂

a(Xi) +
Si(1−ρ̂(Xi))

ρ̂(Xi)
1A=a
π̂a(Xi)

(Yi − µ̂a(Xi))
)

SIMULATION STUDY

We study the generalization estimators’ performance in a simulation study, where we sim-
ulate four scenarios where covariates x1, . . . , x10 ∼ U[−1, 1] and treatment is randomly as-
signed with probability 0.5, and the true (selection / outcome) models are (linear / non-
linear), and nuisance functions are estimated using regularized linear regressions with λ
set to minimise CV-MSE. The selection model dictates how the study sample is selected
from the target population, and whenever this is a function of covariates, the experimen-
tal estimate of the average treatment effect (SATE) is biased for the treatment effect in the
target population (PATE).

We report the performance of the above estimators in figure 1, which displays the RMSE,
Bias, Coverage rate, and runtime across 500 replications. We find that reweighting esti-
mators (red, blue, and purple) consistently outperform ‘naive’ SATE estimates (green).
Consistent with the analogous results in the unconfoundedness literature, we find that
among the generalization estimators, the augmented inverse selection weighting estima-
tor (red) performs best along MSE, bias, and variance dimensions.

DISCUSSION

In this work, we provide a concise multi-treatment framework for causal generalization
and transportation, and provide a performant computational implementation for it. In
current practice, practitioners often informally perform ‘naive’ extrapolation of the Sample
Average Treatment Effect (SATE) to the Target Average Treatment Effect (TATE), which
may result in erroneous conclusions arising from three distinct sources of bias generated
by differences between study and external samples : (1) unequal distribution of effect
modifier covariates in the two samples, (2) Lack of covariate overlap between the two
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FIGURE 1. Simulation Results
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samples, and (3) differences between the effect modification functions between the two
samples2.

2We provide a fuller derivation of these in appendix 1
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Naive extrapolation can be improveduponbyusing the frameworkpresented in the present
paper, which shows that causal generalization and transportation involves (1) estimating
strata-specific Conditional Average Treatment Effects (CATEs) τs(X), (2) asserting out-
come model stability wherein the heterogeneity function τ(X) is stable across the study
and external sample, and (3) reweighting CATEs to match the covariate distribution p(X)
in the target population. The feasibility of each of these steps may be problem-specific,
and practitioners are advised to carefully consider potential problems in each step in their
particular application.

While an enormous literature has emerged on CATE estimation (see [11] for a review),
evaluating the quality of the resultant estimates remains a challenging problem. Om-
nibus tests for systematic treatment effect heterogeneity [7](implemented as dfmTest in
the package) and [3] are strongly recommended prior to the use of generalization esti-
mators. CATE estimation for settings with small treatment effects as is typical in industry
settings is a growing area of research [1] and progress on this problem can readily be
integrated to improve upon effect transportation.

Outcome model stability across the study and external samples is inherently untestable,
and must be justified from substantive knowledge of the study and target population, as
well as the nature of the experimental manipulation. For example, a video compression
treatmentmight have systematic and stable treatment effects across subpopulations, while
a recommendation algorithm may not because of preference heterogeneity that isn’t ade-
quately captured by covariates. Sensitivity analyses in the vein of [4, 8, 12] that assess the
magnitude of violations of outcome model stability that overturn transportation conclu-
sions are a fruitful avenue for future research.

Finally, the effectiveness of selection weights in reducing the imbalance between the study
and external populations can be evaluated using the suite of tools developed for propen-
sity score weights. Plotting standardized mean differences between the source and target
samples is a reasonable first check for whether the weights are effective at reducing imbal-
ance, and is implemented as the plot method for the model object in the package. These
figures are also also intended to help choose between ‘indirect’ balancing via propensity
score modelling versus calibration approaches that target balance directly.
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Part 1. Appendix

BIAS DECOMPOSITION

To simplify notation, lets assume covariate Xi ∈ X is discrete, and follows distributions
ps(X) and pt(X) in the study and target samples respectively. We denote the Conditional
Average Treatment Effect (CATE) as τk(x), k ∈ {s, t}. We assume CATE stability across
samples τs(x) = τt(x) = τ(x), and discuss implications of relaxing this assumption next.

The gap between the Target Average Treatment Effect (TATE) and Sample Average Treat-
ment Effect (SATE) can be decomposed as follows

https://doi.org/10.1080/01621459.2017.1407322
https://arxiv.org/abs/2203.06469
http://arxiv.org/abs/2203.06469
http://arxiv.org/abs/2203.06469
https://arxiv.org/abs/2112.04723
https://arxiv.org/abs/2112.04723
http://arxiv.org/abs/2112.04723


REFERENCES 7

TATE - SATE =
∑
x∈Xt

pt(x)τt(x)− ps(x)τs(x)

=
∑
x∈Xt

(pt(x)− ps(x)) τ(x) by τs(·) = τt(·) = τ(·)

=
∑
x∈Xt

ps(x)
(
pt(x)
ps(x)

− 1
)
τ(x)

From the above, we can see three distinct sources of bias:

(1) When overlap holds, bias contributions come from stratawhere the following three
conditions are true
(a) τ(x) ̸= 0: Non-zero treatment effects
(b) ps(x) > 0 : Nonzero support in study population
(c) pt(x) ̸= ps(x) : Distribution of covariate x is different across study and target

population
(2) When overlap is violated such that pt(x) > 0 and ps(x): there exist strata in the

target population that are unrepresented in the study, the SATE is biased and the
bias is increasing in the size of pt(x) (fraction of target sample unrepresented in
study population) and τ(x)

(3) If the CATE functions τs(x) ̸= τs(x) (i.e. effect modification is different between the
study and target sample).

Our reweighting approach addresses (1) using a post-stratification weights for discrete
covariates and its analogue selection score for continuous covariates. (2) and (3) produce
bias that is impossible to resolve without additional data collection (for 2, for example
through the use of S-admissable designs [13]) or prior knowledge of CATE functions (for
3).
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